首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1149篇
  免费   239篇
  国内免费   383篇
  2024年   3篇
  2023年   58篇
  2022年   40篇
  2021年   52篇
  2020年   104篇
  2019年   99篇
  2018年   94篇
  2017年   90篇
  2016年   94篇
  2015年   81篇
  2014年   64篇
  2013年   110篇
  2012年   80篇
  2011年   75篇
  2010年   60篇
  2009年   70篇
  2008年   80篇
  2007年   58篇
  2006年   56篇
  2005年   42篇
  2004年   35篇
  2003年   39篇
  2002年   38篇
  2001年   34篇
  2000年   19篇
  1999年   17篇
  1998年   22篇
  1997年   12篇
  1996年   10篇
  1995年   10篇
  1994年   11篇
  1993年   9篇
  1992年   8篇
  1991年   8篇
  1990年   12篇
  1989年   4篇
  1988年   5篇
  1987年   11篇
  1986年   4篇
  1985年   8篇
  1984年   8篇
  1983年   5篇
  1982年   6篇
  1981年   9篇
  1980年   5篇
  1977年   2篇
  1975年   2篇
  1973年   3篇
  1972年   1篇
  1958年   2篇
排序方式: 共有1771条查询结果,搜索用时 31 毫秒
991.
运用焦锑酸钾沉淀法研究了华北落叶松(Larix principis-rupprechtii Mayr)小孢子发育过程中不同阶段Ca2 的分布情况.减数分裂时期,小孢子囊壁表皮和中层细胞的细胞壁及细胞间隙Ca2 分布较多,绒毡层只有外切向面的细胞膜有Ca2 分布,小孢子母细胞的各部位则很少有Ca2 ;四分体时期,包围四分小孢子的胼胝质壁上有大量的Ca2 分布,在四分孢子壁上也有较多沉淀;游离小孢子时期,钙离子在小孢子壁的分布较四分体时期有所减少,而到花粉成熟时又逐渐增多;从四分体到花粉成熟,乌氏体周围的Ca2 有增多的趋势.对四分体外壁Ca2 的大量分布与花粉壁的形成及信号物质在花粉表面贮存的关系,以及小孢子囊的外壁、绒毡层和乌氏体在Ca2 向花粉运输中所起的作用进行了讨论.  相似文献   
992.
不同温湿度组合对安徽虫瘟霉 诱发桃蚜病害的影响   总被引:3,自引:0,他引:3  
刘彩玲  冯明光 《昆虫学报》2000,43(4):380-387
用孢子浴方法,对42批次桃蚜Myzus persicae(30~60头/批)接种大剂量(孢子79~90个/ mm2)安徽虫瘟霉Zoophthora anhuiensis的分生孢子,在20℃下保湿24 h后转入不同温度(10℃、15℃、20℃、25℃、30℃及自然变温1.5~16.6℃和8.5~20.2℃)和湿度(50%、65%、80%、90%、95%及100% RH)的组合条件下观察桃蚜的反应。结果表明,各组合条件下的桃蚜均能发病死亡,而且累计死亡率的显著差异存在于不同温度(F=7.46, P<0.01)和湿度间(F=12.54, P<0.01)。最适发病的温度为恒温20℃和变温8.5~20.2℃(日均温12.4℃),死亡率随湿度升高而增大。在10~25℃和100% RH的组合中,温度的变化几乎不影响桃蚜的累计死亡率,但影响发病速率,在10℃、15℃、20℃和25℃下的致死时间LT50值分别为8.4 天、7.1 天 、4.0 天和3.4 天。回归分析表明, 在100% RH下安徽虫瘟霉诱发桃蚜发病的起始温度为1.65℃。在10~15℃及自然变温下,病死蚜尸顺利产孢的湿度为80% RH;而在20~30℃下,蚜尸产孢的湿度为90% RH。在所有温湿组合的蚜尸中未见安徽虫瘟霉的休眠孢子发生。  相似文献   
993.
Various modeling approaches have been applied to describe viscoelasticity of multicellular surfaces. The viscoelasticity is considered within three time regimes: (1) short time regime for milliseconds to seconds time scale which corresponds to sub-cellular level; (2) middle time regime for several tens of seconds to several minutes time scale which corresponds to cellular level; and (3) long time regime for several tens of minutes to several hours time scale which corresponds to supra-cellular level. Short and middle time regimes have been successfully elaborated in the literature, whereas long time viscoelasticity remains unclear. Long time regime accounts for collective cell migration. Collective cell migration could induce uncorrelated motility which has an impact to energy storage and dissipation during cell surface rearrangement. Uncorrelated motility influences: (1) volume fraction of migrating cells, (2) distribution of migrating cells, (3) shapes of migrating cell groups. These parameters influence mechanical coupling between migrating and resting subpopulations and consequently the constitutive model for long time regime.This modeling consideration indicates that additional experimental work is needed to confirm the feasibility of constitutive models which have been applied in literature for long time regime as: (1) relaxation of stress and strain, (2) storage and loss moduli as the function of time, (3) distribution of migrating cells.  相似文献   
994.
995.
Locating optimal protein precipitation conditions for complex biological feed materials is problematic. This article describes the application of a series of high‐throughput platforms for the rapid identification and selection of conditions for the precipitation of an IgG4 monoclonal antibody (mAb) from a complex feedstock using only microliter quantities of material. The approach uses 96‐microwell filter plates combined with high‐throughput analytical methods and a method for well volume determination for product quantification. The low material, time and resource requirements facilitated the use of a full factorial Design of Experiments (DoE) for the rapid investigation into how critical parameters impact the IgG4 precipitation. To aid the DoE, a set of preliminary range‐finding studies were conducted first. Data collected through this approach describing Polyethylene Glycol (PEG) precipitation of the IgG4 as a function of mAb concentration, precipitant concentration, and pH are presented. Response surface diagrams were used to explore interactions between parameters and to inform selection of the most favorable conditions for maximum yield and purification. PEG concentrations required for maximum yield and purity were dependant on the IgG4 concentration; however, concentrations of 14 to 20% w/v, pH 6.5, gave optimal levels of yield and purity. Application of the high‐throughput approach enabled 1,155 conditions to be examined with less than 1 g of material. The level of insights gained over such a short time frame is indicative of the power of microwell experimentation in allowing the rapid identification of appropriate processing conditions for key bioprocess operations. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
996.
Microbially produced gamma‐polyglutamic acid (γ‐PGA) is a commercially important biopolymer with many applications in biopharmaceutical, food, cosmetic and waste‐water treatment industries. Owing to its increasing demand in various industries, production of γ‐PGA is well documented in the literature, however very few methods have been reported for its recovery. In this paper, we report a novel method for the selective recovery and purification of γ‐PGA from cell‐free fermentation broth of Bacillus licheniformis. The cell‐free fermentation broth was treated with divalent copper ions, resulting in the precipitation of γ‐PGA, which was collected as a pellet by centrifugation. The pellet was resolubilized and dialyzed against de‐ionized water to obtain the purified γ‐PGA biopolymer. The efficiency and selectivity of γ‐PGA recovery was compared with ethanol precipitation method. We found that 85% of the original γ‐PGA content in the broth was recovered by copper sulfate‐induced precipitation, compared to 82% recovery by ethanol precipitation method. Since ethanol is a commonly used solvent for protein precipitation, the purity of γ‐PGA precipitate was analyzed by measuring proteins that co‐precipitated with γ‐PGA. Of the total proteins present in the broth, 48% proteins were found to be co‐precipitated with γ‐PGA by ethanol precipitation, whereas in copper sulfate‐induced precipitation, only 3% of proteins were detected in the final purified γ‐PGA, suggesting that copper sulfate‐induced precipitation offers better selectivity than ethanol precipitation method. Total metal content analysis of the purified γ‐PGA revealed the undetectable amount of copper ions, whereas other metal ions detected were in low concentration range. The purified γ‐PGA was characterized using infrared spectroscopy. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
997.
998.
Fullerene‐based carbons are promising electrode materials for supercapacitors due to their unique carbon structures and tunable architectures at the molecular level. By introducing various functional groups with many elements on the fullerene cages, diverse in situ metal/nonmetal‐doped carbon materials with enhanced pseudocapacitances and/or double layer capacitances can be prepared. In the present work, a fullerene derivative, ferrocenylpyrrolidine C60, containing nitrogen and iron, is chosen as the only precursor. A unique microstructure is fabricated by a liquid–liquid interfacial precipitation process. Subsequently, a facile, one‐step annealing of the microstructure at different temperatures is performed. A series of in situ N and Fe‐codoped laminated 3D hierarchical carbon composites in the shape of a cross are successfully synthesized. The as‐prepared N and Fe‐codoped carbon material treated at 700 °C exhibits a high specific capacitance of 505.4 F g?1 at 0.1 A g?1. To the best knowledge, this is the highest supercapacitor capacitance based on fullerene electrode materials. The use of a fullerene derivative as an in‐situ doped carbon for applications in energy storage opens a new avenue for developing future synthetic strategies to extend the repertoire of electrode materials with high performance.  相似文献   
999.
1. We clarified the effects of early leaf abscission on the survivorship of the leaf‐mining beetle Trachys yanoi Y. Kurosawa (Coleoptera: Buprestidae) and the underlying mechanism in relation to weather conditions in Japan. Trachys yanoi is an insect pest of zelkova trees [Zelkova serrata (Thunb.) Makino (Rosales: Ulmaceae)]. Larvae burrow into zelkova leaves and feed on leaf tissue, causing early leaf abscission. 2. This study investigated the relationship between the beetle population and weather conditions over 10 years in a zelkova forest. The effects of moisture and temperature on adult emergence from early abscised leaves were examined in the laboratory and in the field. 3. The beetle population in the studied forest was negatively affected by high precipitation levels when the beetles still inhabited early abscised leaves. Fewer adults emerged from early abscised leaves under wet conditions than under dry conditions, in both laboratory and field tests. 4. These results demonstrate that early leaf abscission plays an important role in leaf‐mining beetle survivorship and population dynamics, and that the amount of precipitation when leaf‐mining beetles still inhabit early abscised leaves modulates this effect. 5. Because precipitation when leaf‐mining beetles still inhabit early abscised leaves was mainly driven by an East Asian rainy season front, the beetle population dynamics were affected by the activity of the front.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号